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Abstract 
This paper reports that the superposition of a small set of behaviors, learned via telmpera- 

tion, can lead to robust completion of an articulated reach-and-grasp task. The results support 
the hypothesis that a robot can learn to interact purposefully with its environment through a 
developmental acquisition of sensory-motor coordination. Teleoperation can bootstrap the pro- 
cess by enabling the robot to observe its own sensory responses to actions that lead to specific 
outcomes within an environment. It is shown that a reach-and-grasp task, learned by an ar- 
ticulated robot through a small number of teleoperated trials, can be performed autonomously 
with success in the face of significant variations in the environment and perturbations of the 
goal. In particular, teleoperation of the robot to reach and grasp an object at nine different lo- 
cations in its workspace enabled robust autonomous performance of the task anywhere within 
the workspace. Superpositioning was performed using the Verbs and Adverbs algorithm that 
was developed originally for the graphical animation of articulated characters. The work was 
performed on Robonaut, the NASA space-capable humanoid at Johnson Space Center. 

1 Introduction 
The paper deals with the problem of enabling a robot to learn from experience by building models 
of the dynamics of its own sensory and motor interactions with objects and tasks [ 11. This interac- 
tion is initially provided by fine-grained teleoperator inputs. Over time, information gleaned from 

*Contributing Authors: Christina L. Campbell, Robert E. Bodenheimer, Eric Huber, William Bluthemann, and 
Robert 0. Ambrose. This report is to be published as a paper in IEEE Transactions on Robotics. 
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teleoperator guidance is compiled into autonomous behaviors so that the robot can perform tasks 
on its own and so that the level of discourse between operator and robot can become more abstract. 

1.1 Approach 
The approach described here builds on the self-organization of sensory-motor information in re- 
sponse to a robot’s actions within a loosely structured environment. In [2], Heifer reported that 
sensory data and concurrent motor control information recorded as a vector time-series formed 
clusters in a sensory-motor state-space. He noted that the state-space locus of a cluster corre- 
sponded to a class of motor action taken under specific sensory conditions. In effect, the clusters 
described a categorization of the environment with respect to sensory-motor coordination (SMC). 

An exemplar of an SMC cluster corresponds at once to a basic-behavior (as used implicity by 
Brooks [3] and later defined by MatariC [4]) and to a competency module in a spreading activation 
network [5]. The latter is a specific example of a more general class of topological, action-map 
representations of an environment [4] which can controlled by discrete-event dynamical systems 
(DEDS) [6,7] with transition probabilities given by Markov decision processes. If the state-space 
is parameterized by time, the clusters are collections of trajectories and an exemplar is a single 
representative trajectory through the space. 

Thus, if a robot is controlled through an environment to complete a task while recording its 
SMC vector time-series, the result is a state-space trajectory that is smooth during the execution 
of a behavior but that exhibits a comer or a jump during a change in behavior (an SMC event). 
From this, a DEDS description of the task can be formed as a sequence of basic behaviors and the 
transitions between them. The task is learned in terms of the robot’s own sensors, actuators, and 
morphology. 

The autonomous execution of fixed motor trajectories by a DEDS controller that changes state 
in response to SMC events will fail if the operating environment differs significantly from the 
learning environment. On the other hand, if a set of trajectories is learned that bounds or covers the 
variations of the task, the task might be performed successfully under more conditions. In partic- 
ular, a new situation might be successfully negotiated through a superpositioning of the bounding 
trajectories. 

This paper reports the results of learning to reach toward and grasp a vertically oriented object 
at an arbitrary location within the robot’s workspace by superpositioning a set of SMC state space 
trajectories that were learned through teleoperation. The ideas behind the procedure are based 
on a number of assumptions: (1) When a teleoperator performs a task it is herhis SMC that is 
controlling the robot. So controlled, the robot’s sensors detect its own internal states and those 
of the environment as it moves within it. Thus the robot can make its own associations between 
coincident motor actions and sensory features as it is teleoperated. (2) In repeating a task several 
times, a teleoperator will perform similar sequences of motor actions whose dynamics will depend 
on hisher perception of similar sensory events that occur in similar sequence. As a result, the robot 
will detect a similar set of SMC events during each trial. Therefore each trial can be partitioned 
into SMC episodes, demarcated by the common SMC events. (3)  Sensory events that are salient to 
the task will occur in every trial; sensory signals that differ across trials are not significant for the 
task and can be ignored. By averaging the time-series for each episode point-wise over the trials, 
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a canonical representation of the motor control sequence can be constructed. As a result of the 
averaging, true events in the sensory signals will be enhanced and those that are random will be 
suppressed. 

This approach does not form an approximation of the inverse kinematics of the manipulator. 
Rather, it learns 6-axis spatial end-effector trajectories that are sent as position commands to the 
robot, which computes its own inverse kinematics. This somewhat higher level approach extracts 
Cartesian motion and pose trajectories, finger position trajectories, and sensory state information to 
create a sensory-motor (or, perhaps more accurately, a sensory-motion) description of the task. 

1.2 Related Work 
This work extends that reported by Peters et al. in [8] where a single trajectory was learned over 
six trials that could later be performed autonomously with success in the face of small variations in 
the environment or perturbations of the goal. In addition to Pfeifer [2], many others have studied 
the extraction of SMC parameters, including Cohen [9, lo], Grupen [l  11, and Peters [12]. Like 
Pfeifer, Cohen concentrates on learning categories from random behaviors. However, he manually 
designates the episode boundaries and uses categorization techniques to find similarities between 
the episodes. While such clustering may become important as more tasks are incorporateci,the 
behaviors in this work can be automatically clustered by their locations in the task sequence. 

Grupen experimented with DEDS of parallel controllers that are, in some respects, quite similar 
in theory to the autonomous parts of the work described here. His systems use but do not learn 
low-level SMC trajectories for motion control, and have mainly focused on grasping and dexterous 
manipulation. Grupen uses collections of closed-loop controllers preselected and preprogrammed 
for variations on a task. The controllers are invoked through a DEDS implemented as a Markov 
Decision Process to complete a task. The approach enables an articulated manipulator to perform 
more complex manipulation tasks than that described in this paper. However the controllers must 
be designed manually, they are not learned. 

In many respects, however, our work is fundamentally different from that of Grupen. We 
create exemplar trajectories of the end effector (hand point-of-reference, 6-axis pose) and finger 
joint positions from a small number of repeated, teleoperated trials of the same task performed at 
different locations in the workspace. The trajectories exist in a sensory-motor state-space since 
the target position is specified by vision and the grasp elicits a response from force-torque and 
haptic sensors. After off-line analysis, these trajectories are recombined in real time to perform the 
same task at any location within the workspace. With regard to manipulation, there is little doubt 
that this approach is not as robust as that of Grupen; ours, however, requires no controller design. 
Grupen’s work appears to be compatible with that described here, as discussed in Section 6. 

The use of motion data to plan robotic motion is a problem that has been studied by MatariC 
[13], Jenkins and MatariC [14], Ude et al. [15], Pollard et al. [16], and Atkeson et al. [17]. MatariC 
and Jenkins have enabled a simulated humanoid to learn unconstrained motion patterns from hu- 
man motion-capture data. (Our work modifies one of their segmentation and data normalization 
procedures.) Jenkins has further studied the creation of new motions through the interpolation of 
learned trajectories using Isomap [26]. In [15], [16], and [17], Ude, Pollard, Atkeson, and their 
co-authors describe a system that learns from demonstration through vision. They enabled the 
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robot DB (from the Kawato dynamic brain project) to watch a person perform a task several times 
and then do the task itself. Through various analysis techniques, the person’s motions as perceived 
by the robot vision system are mapped onto a set of motion primitives. These are similar in con- 
cept to Matarie’s basis behaviors [4] but contain only motor components. The motion primitives 
themselves do not contain sensory information. A task is learned by selecting those primitives 
that combine to best match the image of the perceived motion. The combination is constrained 
by a model of human motion and some regularization terms. Thus, perception itself becomes an 
optimization process that tries to find an underlying motor program to mimic the motion. Through 
these approaches DB can learn a number of complex full-body articulated motion tasks. 

In our opinion, learning from observation is an important and difficult problem. The approach 
described here is in some respects simpler than those described above and thereby avoids some of 
their difficulties. Since our robot learns sensory-motor trajectories through teleoperation, it learns 
its own motions and sensory responses directly. It does not have to map remote observations of 
a far more dexterous machine - a person - into its own limited degrees of freedom. Moreover, 
the authors cited above have enabled their systems to learn large-scale, relatively unconstrained 
motions such as dancing, punching, and playing ping pong. Our approach enables learning of the 
more highly constrained motions required for grasping. Another difference is that they learn only 
the motion not the accompanying sensory percepts. 

2 Robot Hardware 
The experiments for this paper were performed on Robonaut, NASA’s space-capable, dexterous 
humanoid robot. (See Fig. 1). Robonaut was developed by the Dexterous Robotics Laboratory 
(DRL) of the Automation, Robotics, and Simulation Division of the NASA Engineering Direc- 
torate at Lyndon B. Johnson Space Center in Houston, Texas [18]. In size, the robot is comparable 
to an astronaut in an EVA (Extra-Vehicular Activity) suit. Each seven degree of freedom (DoF) 
Robonaut arm is approximately the size of a human arm, with similar strength and reach but with 
a greater range of motion. Each arm mates with a dexterous end-effector - a 12-DoF hand - to 
produce a 19-DoF upper extremity. The robot has manual dexterity sufficient to perform a wide 
variety of tasks requiring the intricate manipulation of tools and other objects. 

Robonaut has many sensors. These include a color, stereo camera platform embedded in a head 
mounted on a 3-DoF neck, and binaural microphones located on opposite sides of the head, par- 
allel to the stereo camera baseline. The two handwrist modules contain 84 sensors for feedback 
and control, 60 of which are analog and require signal conditioning and digitization. Each DoF 
has a motor position sensor, a joint force sensor, and a joint absolute position sensor. The two arm 
modules contain 90 sensors, 80 of which are analog. Each actuator contains a motor incremental 
position sensor, redundant joint torque sensors, redundant joint absolute position sensors, and four 
temperature sensors distributed throughout the joint. Each arm employs relative optical encoders 
in five of its joints. The encoders reside on the motor side of the gear train and have resolutions 
ranging between 200 and 1000 counts per degree of arm motion. The two wrist joints employ 
resolvers integrated into the motor assemblies. (See [19] for a more detailed description of the 
Robonaut mechatronics.) A variety of data signals are recorded from Robonaut during teleopera- 
tion. These are listed in Table 1. They are recorded at a nominal rate of 50Hz but some signals, 
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Figure 1: Robonaut, NASA’s space capable humanoid robot. 

such as those produced by vision, are slower. 
Robonaut is physically capable of autonomous operation. At this time, however, it is most often 

controlled directly by a person via teleoperation. In this mode, every motion made by Robonaut 
reflects a similar motion made by the operator, who perceives the robot’s workspace through full- 
immersion virtual reality. The operator wears a helmet that enables her or him to see through the 
robot’s stereo camera head and and to hear through the robot’s binaural microphones.’ Sensors 
in gloves worn by the operator determine Robonaut’s finger positions. Six-axis Polhemus sensors 
[20] on the helmet and gloves determine the robot’s arm and head positions. An operator guides 
the robot using only vision; there is neither direct haptic nor direct force feedback from robot to 
person. That is, the robot’s haptic sensors do not transmit touch sensations to the operator nor do 
the force sensors project forces onto the operator’s gloves2 

Each 7-DoF arm is commanded independently by specifying the 6D Cartesian pose (position 
and orientation) of its hand’s point-of-reference (PoR). The PoR is located on the back of the hand 
so that it corresponds to the location of Polhemus sensor on the corresponding teleoperator glove. 
Usually the 7th DoF is computed by an inverse kinematics (IK) algorithm that minimizes joint 

‘The robot has microphones for terrestrial use, radio would be used in space. 
*Several approaches to supplying such feedback have been tried. None of them improved the performance of the 

teleoperator acting through vision alone. Indirect feedback in the form of visual force displays are being tested. 
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1 

Table 1 : Signals Recorded from Robonaut. 

I Signal I Dimension 1 

End effector rotation mat, req’d 9 
Arm orbit angle, reauested 3 

I ~ r m  3-axis force on wrist 1 3 1  
I Arm 3-axis torque on wrist I 3 I 
I Arm3-axis forceon shoulder I 3 I 
I Arm 3-axis torque on shoulder I 3 1 
I I 

I Arm joint positions 1 7 1  
1 Arm joint torques 7 
I Hand force on fingers - 
[Hand joint positions 

I 19 I Hand tactile sensors 

velocities. The operator can, by specifying an angle, command the elbow orbit position if the IK 
algorithm computes one that is problematic for the desired motion in the current environment. The 
elbow position is specified by the angle between the plane formed by the shoulder, elbow, and wrist 
and the vertical plane of right-left symmetry of the robot. 

Robonaut’s arm-hand systems have a high band-width dynamic response (the servo control 
loop operates at 50 Hz) that enable it to move quickly, if necessary, under autonomous operation. 
During teleoperation, however, the response of the robot is slowed to make it less susceptible 
to jitter in the arms of the teleoperator and to make it safe for operation around people, either 
unprotected on the ground or in pressurized EVA suits in space. The slowdown is, effectively, to 
a lOHz loop with the teleoperator. The purposeful limitation of maximum joint velocity affects 
not only the motion analysis described below but also the superposition of learned behaviors, 
especially with respect to the time-warping of component behaviors (cf. Section 3.3). 

The Robonaut stereo vision system uses object shape to determine the six-axis pose of well- 
defined objects, such as wrenches and tables, as well as variable-form structures, such a human 
limbs [2 11. The robot’s field-of-view (FoV) is preprocessed using patch correlation on Laplacian- 
of-Gaussian (LOG) filtered image pairs to generate 3D range maps as well as binary, 2D range 
maps taken over a series of range intervals. Initially, four DoFs of a known object are estimated 
roughly through an efficient matching of large sets of 2D silhouette templates against the 2D range 
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maps. This estimate is refined to give a more precise pose estimate in all six DoFs. The strongest 
silhouette matches are used to seed a process which matches 3D sets of contour templates against 
3D range maps. Although considerably more expensive computationally than 2D, a 3D process is 
necessary for the robot to handle and manipulate objects. A high level of precision is obtained in 
real time because most of the environment is filtered out by the much faster 2D silhouette matching 
process. 

After low-pass filtering the outputs with a time constant of about 0.2 seconds (FIR averaging), 
the vision system is accurate to within 0.003 meters and 2.0 degrees in the workspace of the robot. 
This is as measured relative to an object with a calibrated pose. The general accuracy of the 
system in deployment is within about 0.015 meters and 5 degrees. Currently, most estimation error 
is caused by the correlation mismatches on surfaces that are metallic (reflective) or low in texture 
(e.g., a black plastic drill handle). The system outputs the poses of recognized objects within its 
FoV at a rate of about 7 Hz. The overall latency through the system (photons hitting lens to vision 
system Ethernet output) is about 0.22 seconds. Latency from vision output to robot actuation is 
approximately 0.38 seconds. 

-4lthough the teleoperator may be unaware of most of it, all sensory data is available in real 
t h e  fer the rohot’s computers to analyze. In particular, from the data the robot can learn the 
sensory characteristics of tasks performed via teleoperation. That information can, in turn, be used 
by Robonaut in autonomous operations. 

3 Behavior Superposition 
There were four phases in the data gathering and analysis for this learning task 

1. A teleoperator controlled the robot through the tasks that would serve as examples. Five trials 
at each of nine locations were performed of a reach and grasp of a vertically oriented object 
(a wrench). As the teleoperator performed these example motions, Robonaut’s sensory data 
and motor command streams were sampled and recorded as a vector time-series or signal. 

2. The SMC events common to all trials were found and used to partition the signal into 
episodes. The episodes were time-warped so that the jth episode in the kth trial had the same 
duration (and number of samples) as the jth episode in every other trial. (cf. Section 3.3.) 

3. The signals were averaged over all five trials at each location to produce a canonical, sensory- 
motor data, vector time-series for each location. This approach is similar both to that of 
Jenkins and MatariC [ 141 and to those analyzed by Cohen [ 101. 

4. These generalized motions were combined using the process described by Rose et ai. [22] 
called Verbs and Adverbs. 

When the process completed, the resulting set of parameters could be saved to file and then used 
to create a general representation of the task that was adaptable under real-time conditions. 
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Figiiic 2: ?!at zf the nine exemplar object locations from the robot’s viewpoint. The dark-shadcd 
regions are the bounding surfaces of workspace volume delineated by eight of the poinis. The 
contour is the end-effector trajectory from one trial of the experiment where the object was at the 
ninth position, in the center of the box. The arrowheads indicate the direction of motion. The inset 
shows the grasp, hold, and release episodes in greater detail. They are: (a) reach, (b) grasp, (c) 
hold, (d) release, (e) withdraw. 

3.1 Teleoperation 
The task performed by the teleoperator was to reach forward to a wrench affixed to a frame, grasp 
the wrench, hold it briefly, release it, and withdraw the arm. The frame made it possible to re- 
position the wrench as needed while keeping it steady during task performance. For the purposes 
of these experiments, the wrench was positioned in a reachable, nearly vertical position. Nine 
example locations were chosen. Eight of these were positioned approximately at the comers of 
a virtual box that defined the limits of the reachable workspace. The ninth was a point near the 
middle of the box. Five trials were repeated at each of the nine locations. 

Fig. 2 shows a 3D plot of the locations, with lines drawn to indicate the box, which is a warped 
parallelepiped. The curve in the middle is a plot of the end effector’s point of reference throughout 
one of the five trials where the object was at the central position. The box is depicted from the 
viewpoint of one of Robonaut’s cameras. The coordinate frame used for all Cartesian locations in 
this paper is centered on Robonaut’s chest. The z-axis points out, the y-axis points right, and the 
z-axis points down. Note in the figure that the y-dimension of the box is much longer than the z- 
and z-directions. 

3.2 Segmentation 
A vector time series, 

Vi@) = [ Si,l . * * Si ,N  IT(% 
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Figure 3: Arm and hand joint positions during a single trial at a single location plotted with respect 
to time. The 3 thumb DoFs are summed as are the 9 finger DoFs. The episode boundaries are 
demarcated as vertical lines. They are (L to R) the period prior to motion, reach, grasp, hold, 
release, withdraw. 

was recorded during each teleoperated trial of the task. The time series contained N separate 
signals, ~ ~ , ~ ( t )  from the various sensors and actuators. The signals and their dimensions are listed 
in Table 1. 

The time-series data from the experiment was manually segmented into 45 trials according to 
markers embedded in the voice channel of the robot's data stream. Then each trial was partitioned 
into five SMC episodes3 (reach, grasp, hold, release, withdraw) demarcated by SMC events that 
were found through an analysis of the mean-squared velocity (MSV) of the joint angles, ai, 

a 

the sums of the squares of all the joint velocities in the arm-hand system [23]. Changes in velocity 
are apparent in the joint position profiles of a single trial as shown in Fig. 3. 

31n this work, the trials were demarcated manually and each trial was segmented automatically into episodes. The 
trials could have been likewise extracted automatically, but were not since episode extraction was the focus the work. 
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Figure 4: A plot of the instantaneous mean-squared joint velocities, z ,  for one teleoperated trial 
at one object location. The lower and upper thresholds, c and 15c, are indicated by horizontal 
lines. The episode boundaries (pre-motion, reach, grasp, hold, release, withdraw) are demarcated 
by vertical lines. 

An SMC event was defined as the beginning or end of a sufficiently large peak in the MSV, 
since that corresponded to a significant acceleration or deceleration in the arm-hand system. The 
beginning of a peak was marked at time t o  if (1)  to) exceeded a threshold, c, and (2) z ( t )  exceeded 
15c at a later time tl > to before (3) falling below the lower threshold, c, again at a still later time 
t 2  > tl. That is an SMC event was marked at time, to, if 

 to - 1) < c AND  to) 2 c AND ~ ( t l )  > 1 5 ~  (3) 

for some tl > to  providing that z ( t )  > c for all t E (to,  tl). The end of the peak was detected at 
time t2 if, 

for some tl < t 2  providing that z ( t )  > c for all t E (t l ,  t 2 ) .  

A threshold of c = 0.02 deg /s2 was derived empirically as the fifth percentile of a sampled 
distribution of measured accelerations. That is, let Z be the largest value of z measured throughout 
the trials. The value of c was increased from 0.0012 to 0.12 in increments of 0.0012. For each c, 
define the set of times T, = {tl2(t) > c}. Then compute the mean and standard deviation of the set 
2, = { 2 ( t )  It E T,}. As c increases the number of points in 2, decreases while the mean value of 2, 
increases. Moreover the data in 2, becomes dominated by values from the peaks which vary from 
one another more than do those points that are closer to zero. As a result, the standard deviation 
of 2, increased (roughly) logarithmically with c but levelled off at an asymptote of approximately 
0.62. The 95th percentile, 0.572, was reached at c M 0.02. The factor of 15 was used for the upper 
threshold because it yielded the number of episodes that were expected. (See Fig. 4.) 

The MSV was found to be an excellent indicator of the grasp, hold, and release events if the 
hand joint velocities were included in it. It was not reliable in detecting those events if only the 
arm joint velocities were included. The vector time-series between two SMC events were taken as 
SMC episodes that corresponded to distinct behaviors. 

z(t2 - 1) > c AND ~ ( t g )  5 c AND ~ ( t l )  > 1 5 ~  (4) 
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Figure 5: Thin contours: the hand point-of-reference (PoR) trajectories in the zy-plane over the 
five trials at one location. Thick contour: the exemplar PoR trajectory constructed as the point-wise 
average of the 5 trials. 

3.3 Time Warping: Normalization and Averaging 
Once the segmentation of the data was complete, the SMC episodes that comprise the task were 
time-warped through resampling to have a duration equal to the average duration of the 45 trial 
episodes. Then for each of the 9 locations the average vector time-series was computed from 
the five corresponding trials. For example, the reach behavior averaged 150 time steps across 
the 45 trials. Each of the time-series that comprised the reach episodes was time-warped and 
resampled to have length 150. The five reach episodes from the five trials at each location were 
averaged to create nine exemplar reach episodes each with 150 samples in duration. Fig. 5 shows 
the trajectories from the five trials at one location and the average of the five. 

In these experiments we used a point-wise linear averaging of the time-normalized sensory- 
motor episodes to produce an exemplar for the task. The effect of averaging the five trials at each 
location was to enhance those characteristics of the sensory and motor signals that were similar 
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in the five and to diminish those that were not. One could use the median value at each point, if 
a minority of the exemplars showed deviations due to noise or other mismeasurement. Moreover, 
signals that exhibit nonlinear behavior with respect to time (e.g. a binary or odoff signal) would 
require a median or other order-statistic filter to preserve the signal characteristics. Certainly, av- 
eraging would produce a skewed result if one of the exemplar episodes were significantly different 
from the others to be combined with it. However, it was a premise of this work that such episodes 
would not differ significantly from each other in their salient features. If that premise were incor- 
rect, the characterization of a behavior through the type of analysis described here would be of 
dubious value. But, the premise was found to hold throughout these particular experiments. 

Through the four-step procedure (cf. Section 3) nine sensory-motor state-space trajectories 
were created. These were taken to be the exemplars of the clusters formed by the five trials of the 
reach-and-grasp task at each of the nine locations. 

Given the dynamics of Robonaut under teleoperation - its maximum velocity is limited - the 
durations of the episodes are relatively long and the sampling rate well exceeds the Nyquist limit. 
Thus the salient sensory-motor characteristics are well represented in all the trials at each of the 
iocations and time warping for episode normalization preserves those characteristics. This would 
not necessaiily be the c z e  if the szmpling rate were near the Nyquist limit and some of the episodes 
were of short duration. 

3.4 Superposition using Verbs and Adverbs 
After the resampling and averaging of the sensory-motor data from the example tasks, the data were 
analyzed to characterize the motions that would enable Robonaut to reach toward and then grasp 
a vertically oriented wrench anywhere within its workspace. This was done with an interpolation 
method called Verbs and Adverbs, (VaV) developed in the computer graphics community by Rose 
et al. [22]. The following description is an adaptation for robotics of the algorithm from that paper. 
Table 2 lists symbols used in the description. 

A verb in this implementation of the algorithm is the motion component of a task exemplar, 
its motion trajectory in the sensory-motor state-space. Let 7 c !J? be a set of consecutive sample 
times. Let S represent the motion state-space; dim(S) = N,. Define mi(t) : 7 -+ S to be the 
value at time t of the motion state trajectory of the ith exemplar. Let mi E S x 7 represent mi(t) 
over all time, the trajectory in its entirety. Let m represent an arbitrary motion state trajectory. 

An adverb, p, is an No-dimensional vector in adverb space, A, that characterizes in some 
way a particular motion trajectory, m. The adverb is a specific parameterization of the motion 
trajectory. Thus by implication there exists a mapping 

such that 
mi = Q [ ~ i l  

for each of the Ne exemplar motion trajectory + adverb pairs, (mi, pi). Generally, the mapping is 
unknown for trajectories other than the exemplars. The VaV algorithm, in effect, computes @ to 
find a trajectory, m, for a given parameterization, p. 
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Pi 
P; 

r(P) 
7 
Oai 

Table 2: Symbols for Verbs and Adverbs Algorithm. 

Na 
Nu + 1 

Ne 
Ne 
1 
1 

adv. corresponding to exemplar motion i 
homogeneous pi; p; = [l pTIT 
vector of RBF amplitudes, 1 per exemplar 
vect. of exemplar RBF intensities, ri(p) 
set of consecutive time steps 5 92 
decay constant for RBF at adv. P; 

I Symbol I Dimension I Meaning 
I d 1  Nfl I adverb mace. N, = no. comD'ts. Der adv. I 

mij ( t )  
fib) 
ri(p) 

Ti  i 

~~~~ ~~ € 1  Ne 
S I  N ,  

I exemplar state space, Ne = no. of exemps. 
I motion state mace. N ,  = no. of states 

-. 
1 
1 
1 
1 

jth component of (state in) mi(t) 
distance from exemplar adv. pi to p E A 
mag. at p of RBF located at adverb pi 
r ; (m) .  intensitv at 7th adv. of ith RBF 

I I "  

S X T  I N, + 1 I motion state trajectory space 

m(p;t) I N, I state vect. of motion with adv. p at time t 
I LMS approximation of motion state trai. m l  N ,  + 1 

motion state residual: m - m 
vect. of state j from all exemps. at time t 
LMS approximation of nj (t) 
state j residuals nj ( t )  - iij ( t )  
adverb space vector: an adv., or adv. loc. 

nj ( t )  
nj(t> 
fij ( t )  

Nfl 
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In [22] several example motions were created for articulated characters. The mapping of these 
motions into a multidimensional adverb space defined extrema1 points along axes of the space. 
A particular adverb extremum characterized the appearance of the associated motion. To create 
motions that exhibited combinations of the characteristics, a location in the adverb space was 
selected and mapped back into the motion space. In the work described here, the adverbs are 
the 3D Cartesian world coordinates of the object to be grasped (the wrench). Exemplar reach-and- 
grasps were acquired near workspace extrema for the robot’s right arm. To perform the operation at 
other locations in the workspace, the VaV algorithm was used to interpolate the exemplar motions. 

The algorithm projects the motion exemplars at each time t onto an N, + 1-dimensional, lin- 
ear subspace of the motion state space, S, That subspace is the range of a matrix, A(t )  that is 
the least-mean-square (LMS) approximation of @[-](t). Since a[.]@) is nonlinear and because the 
dimension of the adverb space is usually much smaller than that of the motion state-space, the 
projection through A ( t )  is inaccurate. In fact, the exemplar adverbs are not mapped by A ( t )  to 
their corresponding motion trajectories. To compensate, a radial basis function (RBF) interpola- 
tion operator is defined that restores the exemplar’s components lost in the projection. Given a new 
adverb (in this case, a new grasp location), p, the corresponding motion, m(t),  is found by com- 
pu1111g I.- - - l l l ( G )  ‘+\ - - A L , ” , p  /+L. +hen adding to that the RBF interpolation of the exemplars that is indicated 
by p. This approach permits a limited extrapolation of the data since the subspace projection caii 
construct new trajectories that extend parametrically beyond the exemplars. 

3.4.1 Linear Approximation 

The LMS subspace is found by deriving an approximation of @(t)  directly for each time step 
(sample) of the exemplars. Since the ith motion exemplar, mi, is functionally related to the ith 
adverb, pi (for i = 1, . . . , Ne),  each state, rnij(t) (for j = 1, . . . , N,) ,  at each instant, t, is likewise 
related to pi. Assume the relationship is first-order (affine). Then at time t state j of exemplar i is 
related to the ith adverb through a vector of coefficients, aj ( t )  E 8 x A as follows: 

where p: = [ 1 p;]’ is a homogeneous representation of the adverb space pre-image of mi. To 
compute all the states of all exemplars at time t use 

M ( t )  = A(t )Ph 

M ( t )  is the N,  x Ne matrix of exemplar states at time t. The ith column of M ( t )  is mi(t), the 
vector of N,  state values of exemplar i at time t. The jth row of M ( t )  is n;(t), the transpose of 
the vector that contains the jth state of all Ne exemplars at time t. Ph is the (N,+ 1) x Ne constant 
matrix whose ith column is p:, the homogeneous representation of the ith adverb vector. A ( t )  is 
the N,  x (Na+l) matrix whose jth row is a;(t), the transpose of the vector of coefficients, which 
are unknown. There is one aj(t) for each state variable at each time step in a motion trajectory. 

If @(t)[.] were linear then, 

M ( t )  = @(t)  [PI = A(t )Ph.  (9) 
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Probably @ is not linear so equation (9) does not hold. Instead the A( t )  is found that minimizes 
the mean-squared error, 

IIM(t) - G(t)1l2, where M ( t )  = A(t)Ph.  (10) 

Then 

Matrix A(t )  maps p,", which contains the adverb associated with exemplar i, into mi(t), which is 
the orthogonal projection of mi(t) onto the range of the LMS approximation of @. For any adverb, 
p E A, the approximate motion state-vector at time t is, therefore, 

G(t) = A( t )Ph  = M ( t )  (Ph)TIPh(Ph)T]-lPh. (12) 

m ( t )  = A(t )  ph. (13) 

3.4.2 Interpoiation 

Trajectory m, as computed with equation (13) over all t ,  is a hnear subspace appifiaimatka cf &e 
true trajectory, m. Usually N,+2,  the dimension of the subspace, is considerably smaller than 
N,  + 1, which means that the approximation is, likely, not very accurate. In fact, it is usually the 
case that 

(14) 

for i = 1 , .  . . ! Ne, and for all t ;  the mapping is incorrect even from the exemplar adverbs to the 
exemplar trajectories. Let mi(t) represent the ith residual, 

mi(t) + m*(t) = A ( ~ ) P ! ,  

mi(t) = mz(t) - mi( t ) ,  (15) 

f o r i =  1, . . . ,  Ne. 

the LMS transform, A( t ) ,  so that the resultant transform holds for all the exemplars. That is, 
Radial basis functions can be used to define at each time-step a function, f(t)[-1, that augments 

mz@> = W P !  + f(t>[P,l, (16) 

for i = 1, . . . , Ne.  RBFs so defined act as interpolation functions so that an arbitrary adverb, p 
(not necessarily one of the exemplars) maps to a combination, m, of the exemplar motions through 
the expression 

(17) 
f ( t ) [ . ]  is determined as follows: Equations (13), (15), and (16) imply 

m(t> = AWPh + f(t)[Pl. 

f ( t ) [ ~ i l  = mi(t) i  (18) 

f ( t ) [ . ]  maps adverb pi to the residuals of the states of the ith exemplar trajectory. If we consider 
all the exemplars at once, this becomes 

f ( W 1  = (19) 
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To determine f ( t ) [ . ] ,  we consider the rows of &?(t), 
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Vector nj(t), the transpose of the jth row, contains the residuals for state j of all Ne exemplars at 
timet. Note that nj(t) E E. 

Let ri be an exponential RBF defined at the ith adverb location, pi. Its intensity at any point 
p E d i s  

(21) = e-fl.P3P) 

where 
P d P )  = IIP - Pill, 

the distance from p to pi. Parameter Pi determines the falloff in intensity of the ith RBF as the 
distance from it increases. For the reach-and-grasp experiments these were computed as 

so that at pj, the exemplar adverb closest to pi, the intensity was r i ( p j )  = 0.01. 
Define R as the Ne x Ne matrix of RBF intensities at the locations of the Ne adverb vectors. 

R = [ r i k  ] , where rik = rj(pk), (24) 

for i, k E { 1,2, . . . N e } .  The ith row of R contains the values of the ith RBF measured at each 
adverb location. The kth column contains the values of all the RBFs measured at the location of 
adverb k. 

Vector, iij(t) can be represented in terms of R, by 

iij(t) = RTqj( t ) ,  

where qj ( t )  = [ q j , l ( t )  . . . qj ,N,  (t) 1' weights the values of the RBFs at each adverb location so 
that the residual of state j is matched. For all N, states, this can be written as 

MT(t)  = RTQ(t), 

where Q(t)  is an Ne x N,  matrix. Since a(t) and R are known, Q(t)  can be found by inverting R, 

QT(t) = M(t)R-l. (27) 

(Note that R is not a function of time since it depends on the adverbs which are constant.) If R 
is not invertible, an appropriate pseudo-inverse can be employed. With this, the exemplar adverbs 
will map to their corresponding trajectories through 

M ( t )  = A( t )P  + QT(t)R, (28) 
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Figure 6: Eleven trajectories generated by the VaV algorithm. The inset is a detail that shows 
(a) the approach, (b) grasp, (c) hold, and (d) release episodes of one of the eleven synthesized 
trajectories. 

where 
‘ ( p i )  = [ ‘ ~ ( P I )  rNe(~i) I T ’  (30) 

is the contribution at each adverb of the ith RBF. Q is found not for the purpose of recreating the 
exemplars, but for interpolating between them. If an arbitrary adverb, p, is used in equation (29), 
QT(t)r(p) interpolates # ( t )  to produce a “difference” estimate, m(t) for what would (presum- 
ably) be the associated true motion state vector, m(t). 

Therefore, j ( t ) [ . ]  = Q*(t)r(-) and given a grasp location, p, an estimated motion trajectory is 
computed by 

(31) 

for each time step t. Fig. 6 shows 11 trajectories generated by the VaV algorithm. Two of them 
place the PoR at exemplar positions, at opposite comers of the box delineated by the teleoperated 
trials. Seven of the trajectories lie within the exemplar box and, therefore, result from the interpo- 
lation of all nine exemplars. Two of the trajectories lie outside the box. These demonstrate that 
extrapolation beyond the exemplar area can result in good trajectories. 

m(t) = A(~)P’’ + QT( t ) r (p ) ,  
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3.5 Other Methods 
In addition to the method described above, two other methods were used to perform the reach- 
and-grasp autonomously. The first method, called AutoGrasp and described in [8], used only one 
exemplar trajectory derived from six repetitions of a similar reach-and-grasp operation, but to only 
one central workspace location. Given another grasp location, this original trajectory was adjusted 
toward the grasp location at each time step. In simulation, this method achieved a high placement 
accuracy, but for locations far from the original, the hand approached the wrench from the wrong 
direction for a grasp to be successful. When implemented on Robonaut, the AutoGrasp method 
interacted poorly with the vision system. While it was possible to run one or two trials without a 
problem, the continual update of the wrench location would gradually introduce an error into the 
trajectory adjustment. 

The second method, LinearGrasp, linearly interpolated the learned trajectories directly. First 
the distance in each Cartesian dimension from each of the nine example locations to the current 
wrench location was calculated. A Gaussian curve centered at each example provided weights for 
each dimension based on these distances. The weights were normalized and each example motion 
was multiplied by its corresponding weight. When these weighted motions were superpositioned, 
the result was a motion that would, ideally, perform the reacii-iiiid-grq at &e I?PW !omtion. Both 
in simulation and on Robonaut, however, the method was found to be imprecise. Sometimes it 
would grasp at the correct location; other times it would miss. A full description and analysis of 
both these programs and their results is available in [25]. 

4 Experimental Methods and Procedures 
The VaV procedure was tested in simulation and on Robonaut. Simulation tests were run on a ran- 
domized list of 269 reachable targets in a 3D grid that covered the entire workspace and extended 
somewhat beyond the edges defined by the original box. The test on Robonaut was performed by 
affixing a wrench to a jig, and placing it arbitrarily at reachable points in the workspace. Some 
attempt was made to cover the entire workspace, but since the goal was to prove that Robonaut 
could reach randomly generated targets, a systematic selection was not used. Robonaut’s vision 
system was employed to locate the wrench in the workspace. The following IIR lowpass filter was 
applied to the wrench pose, w(t), (location and rotation) to smooth perturbations due to noise. 

WLPF(t) = O.lw(t) + O.SWLPF(t - 1) (32) 

The major difficulty encountered in performing these experiments was Robonaut’s eye-hand 
coordination. The actual location of the hand can vary as the encoders that measure the joint 
angles are turned on and off. At the time of the tests the solution to the problem was a manual 
calibration with three steps. First, the arm was reset (by eye) to its zero position and the encoders 
were reset so that they would report zero at that location. Second, the reported point-of-reference 
(POR) on Robonaut’s hand was changed from the standard location for teleoperation, which is on 
the back the hand. That location on the robot corresponds to the location of the position sensor 
on the teleoperator’s data glove. The POR was changed to the standard location for autonomous 
operation, which is in the middle of the palm. Third, a wrench was placed in the workspace 
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Figure 7: Plot of the 23 test locations. The wrench was $iced a: each zf the Incations marked 
with a disk. Projections onto each coordinate plane of the locations of the wrench during the 
teleoperated trials are indicated by x and @ marks. The three disks, each marked with a white x, 
indicate locations at which the grasp failed. At the 20 other locations, the robot grasped the wrench 
successfully. 

and was reached for manually by moving the individual joints to the correct location, then the 
reference location for the hand was changed again by a few centimeters. This was made as a final 
adjustment between the location reported by vision and that reported by the arm kinematics. After 
this adjustment, when the hand was grasping the wrench, the location of the hand as reported by 
Robonaut matched the location of the wrench as reported by the vision system. 

During the experiment, the wrench was put in 23 different locations. (See Fig. 7.) The run-time 
part of the VaV program, which implements equation (3 l), was run for each of the locations. The 
only input that the program had were the results of the off-line analysis and the location of the 
wrench reported by the visual system, which was updated in real time. 

5 Results 
The simulator was of limited value in testing the procedure since it had no direct method for 
judging the outcome of a grasp attempt. Nevertheless, the simulator was used since it enabled 
a more complete analysis of the workspace than with Robonaut, due to time-sharing constraints. 
To ameliorate the deficiencies of simulation, numeric criteria were created from the trials run 
physically on Robonaut (both the original teleoperator examples and the experimental results). The 
trials were sorted based on physical evidence of a good or bad grasp, and then analyzed within the 
two categories. Three criteria for a good grasp in the simulated data were created. The first criterion 
was the most obvious. If the grasp occurred too far away from the wrench to have enveloped it, 
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Figure 8: Plot of the index finger joint trajectories (their sum) superimposed on the finger force 
response (also summed) for a successful grasp (bottom) and an unsuccessful grasp (top). 

the grasp could not have been successful. Any grasp that was more than 2.6 cm from the wrench 
location was labelled as bad. The second and third criteria concern the approach angles. If the arm 
motion caused the hand to approach the wrench at the wrong angle, the hand could not grasp it 
because the fingers, or even the hand itself, would have had to physically pass through the wrench. 
To judge approach angles, a vector was created by finding the direction of motion produced in 
the final stages of the Reach behavior. When converted to spherical coordinates, this direction 
provided two approach angles: 8, measured in the 2 - y plane; and 4, the angle with respect to 
the z-axis. These angles provided a way to judge if the trial in simulation correctly approached the 
wrench. The data recorded from Robonaut determined that, for a successful approach, the angles 
had to be between -1.7" and -25.8" in 4 and between 134.7" and 76.8" in 8. 

Finally, some of the physical grasps that were incorrect were not the fault of the superposition 
method but of the calibration of the vision system (which was beyond the authors' control). Also, 
occasional inaccuracies in depth perception within various regions of the workspace resulted in 
errors in reported wrench location. When that happened, the hand grasped in front of, or behind 
the wrench. Nevertheless it did grasp at the location indicated. Since these errors were not in 
the superposition method itself, the corresponding grasps were defined as "marginal" and were 
classified as good grasps for the purpose of creating the simulator criteria and calculating results. 
This issue will be addressed further in future work. In particular, it should be straightforward for the 
robot to learn that is has been unsuccessful so that it can retry the task. Fig. 8 shows the index finger 
joint trajectory and the force response characteristic of a successful and an unsuccessful grasp. 
Although the joint trajectories are similar in both cases, there is a clearly discernable difference in 
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Method 

Auffirarp 

LinearGrasp 

VerbsAdverbs 

Table 3: Results from Simulation. 

Good Grasps Marginal Grasps 8 Good or Marginal 

3 7 43.48 
8 10 78.26 
10 10 86.96 

7 July 2004 

LinearGrasp 14.50 
269 

Table 4: Results from Experiments on Robonaut. 

the force signatures. If such a difference is consistent (we found it to be so in the 20 wzcessfi! md 
three unsuccessful experiments) it can be detected and so used. 

Tables 3 and 4 report the results of the three methods in simulation and on Robonaut. The 
Verbs and Adverbs method clearly outperformed the other two programs. It had better than 99% 
accuracy in the simulator trials, which were designed to cover the entire workspace. While not 
performing perfectly in the physical trials, it outperformed other methods used for the task. 

6 Conclusion and Future Work 
The work reported in this paper has supported the hypothesis that a task can be learned by an articu- 
lated, dexterous robot through teleoperation, and that the task can be performed later autonomously 
with reasonable robustness. It was demonstrated that 45 repetitions of a reach-and-grasp task, 5 
at each of 9 locations, was sufficient for autonomous performance at random locations throughout 
the workspace with a success rate of 87%. After teleoperation, sensory-motor data was segmented 
into episodes, and averaged to find 9 exemplar state-space trajectories. In the framework of the 
larger project (cf. Section 1) that uses the results, the exemplars are nine instances of a sequence of 
5 basic behaviors that were guided by 9 different sensory cues. The trajectories were interpolated 
successfully using the Verbs and Adverbs algorithm. This, in turn, supports the larger project’s 
hypothesis that tasks learned as sequences of behaviors in the form of exemplars of clusters of 
sensory-motor state-space trajectories can be superpositioned to enable the robot to perform the 
task under more widely varying conditions than those during which the task was learned. That is, 
the runtime superpositioning of previously learned behaviors enables robust task performance. 

The VaV approach interpolates both reaching and grasping. However, the grasping in our 
experiments was restricted to a simple distal closure around a vertically oriented object (a wrench). 
The position of the hand relative to the arm changed at each of the exemplar object locations. The 
grasp varies slightly over the locations. Therefore the grasp (as defined by the finger position 
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trajectories) was interpolated, as well. To further understand the capabilities and limitations of 
VaV, we intend to test the interpolation of grasping in the near future. Our first test will be to learn 
the trajectories for various distal grasps (e.g., from above and from below) of a quasi-cylindrical 
object in vertical and horizontal orientations. Then we will test the distal grasping of a similar 
object in arbitrary orientation within the same plane as the examples. 

Our work in this paper used the vision system to obtain the target location, it used propriocep- 
tive data, i.e. sensory data from the joint sensors in its trajectory calculations, and it used haptic, 
force, and torque data to detect events during autonomous operation. The vision system was not 
used for visual servoing. That is, it was not used in closed-loop with the arm and hand controllers 
to determine and change the pose of the hand relative to the target. A hybrid approach that includes 
vision in closed-loop may prove to be more capable than VaV alone. Platt has shown recently that 
Grupen’s closed-loop controller approach works very well for certain complicated manipulation 
tasks [27]. Therefore, we are currently researching the combination of our trajectory extraction 
with Grupen’s grasp controllers. In effect, VaV is used to control unconstrained motion, sequenc- 
ing, and pre-grasp pose control, while Grupen’s controllers handle dextrous manipulation. In one 
current experiment, the VaV algorithm is being used to extract a description of a multi-step task 
performed by Robonaut through teleoperation. The task includes various reaching, grasping, and 
manipulation steps. The VaV trajectories are used to guide Robonaut‘s hand toward inierrrie&iitie 
goal positions with a pose evolution that mimics that of the teleoperator and sets up the hand for 
a grasp. When the hand comes within range of the target, an appropriate closed-loop controller, 
pre-designed for the manipulation task, is selected from among a set of such controllers. The con- 
troller guides the manipulation task and then releases control back to the VaV trajectory generator 
for the next unconstrained motion. 

A set of closed-loop controllers can be used as sensors during teleoperated and VaV controlled 
tasks. Fagg has demonstrated recently that a set of such controllers operating independently and in 
parallel can reliably predict the intent (within a task context) of an unconstrained motion [28]. As 
observers, the controllers indicate which behavior (from among a set of possibilities) is the most 
likely to be required next in the task. Thus the controllers themselves guide their selection during 
the unconstrained phases. This information, along with the VaV trajectories, becomes a recipe for 
autonomous task execution in the face of environmental contingencies. 

The VaV algorithm may also enable the automatic design of such controllers. In Grupen’s 
approach, closed-loop controllers follow trajectories in a state-space that lead to attractors. Our 
approach extracts and recombines trajectories in a sensory-motor state-space. Therefore, it appears 
possible that our approach could be used to discern regions of attraction in the state space which 
could then be used to define closed-loop controllers automatically. 

The next step in the project is to extend the types of behaviors used and demonstrate that 
behaviors learned at different times for different tasks can be composed at runtime to solve new 
problems. The present method bears some similarity to classical gain-scheduling; however, the 
dynamics of the underlying Robonaut controllers did not dominate the behaviors we have explored 
so far. We plan to extend the range of behaviors to include highly dynamic ones and determine 
how well this procedure extends. Given a robust set of learned behaviors, we believe that their 
composition will allow Robonaut to become robust at problem-solving. 
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